Two-dimensional Keller-segel Model: Optimal Critical Mass and Qualitative Properties of the Solutions

نویسندگان

  • ADRIEN BLANCHET
  • JEAN DOLBEAULT
  • BENOÎT PERTHAME
چکیده

The Keller-Segel system describes the collective motion of cells which are attracted by a chemical substance and are able to emit it. In its simplest form it is a conservative drift-diffusion equation for the cell density coupled to an elliptic equation for the chemo-attractant concentration. It is known that, in two space dimensions, for small initial mass, there is global existence of solutions and for large initial mass blow-up occurs. In this paper we complete this picture and give a detailed proof of the existence of weak solutions below the critical mass, above which any solution blows-up in finite time in the whole Euclidean space. Using hypercontractivity methods, we establish regularity results which allow us to prove an inequality relating the free energy and its time derivative. For a solution with sub-critical mass, this allows us to give for large times an “intermediate asymptotics” description of the vanishing. In self-similar coordinates, we actually prove a convergence result to a limiting self-similar solution which is not a simple reflect of the diffusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Qualitative behavior of a Keller-Segel model with non-diffusive memory

In this paper a one-dimensional Keller-Segel model with a logarithmic chemotactic-sensitivity and a non-diffusing chemical is classified with respect to its long time behavior. The strength of production of the non-diffusive chemical has a strong influence on the qualitative behavior of the system concerning existence of global solutions or Dirac-mass formation. Further, the initial data play a...

متن کامل

Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis.

In two space dimensions, the parabolic-parabolic Keller-Segel system shares many properties with the parabolic-elliptic Keller-Segel system. In particular, solutions globally exist in both cases as long as their mass is less than a critical threshold M(c). However, this threshold is not as clear in the parabolic-parabolic case as it is in the parabolic-elliptic case, in which solutions with mas...

متن کامل

Optimal critical mass in the two dimensional Keller-Segel model in R

The Keller-Segel system describes the collective motion of cells that are attracted by a chemical substance and are able to emit it. In its simplest form it is a conservative driftdiffusion equation for the cell density coupled to an elliptic equation for the chemo-attractant concentration. It is known that, in two space dimensions, for small initial mass there is global existence of classical ...

متن کامل

Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions

This paper is devoted to the analysis of non-negative solutions for a generalisation of the classical parabolic-elliptic PatlakKeller-Segel system with d ≥ 3 and porous medium-like non-linear diffusion. Here, the non-linear diffusion is chosen in such a way that its scaling and the one of the Poisson term coincide. We exhibit that the qualitative behaviour of solutions is decided by the initial...

متن کامل

A one-dimensional Keller-Segel equation with a drift issued from the boundary

We investigate in this note the dynamics of a one-dimensional Keller-Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller-Segel system. Solutions are global if the mass is below the critical mass, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006